INVARIANT REDUCED ACTIVATION ENERGY FOR THERMOKINETIC CURVES WITH NON-PREDETERMINED ORDER OF REACTION

M. Balarin
Forschungsbereich Physik, Kern- und Werkstoffwissenschaften der Akademie der Wissenschafien der DDR, DDR-8027 Dresden, Helmholtzstraße 20

(Received June 12, 1978)

Sometimes thermokinetic curves should be analyzed, even if their effective order of reaction n has not been established either from any reaction model or from experimental data, or n could not be evaluated with sufficient accuracy. For this case in [1] it was claimed that, independent of the accuracy of the determination of the true order of reaction $n_{\text {true }}$, the constancy of the ratio $\left(\frac{E}{n}\right)$ is observed, i.e. $\frac{E_{\text {true }}}{n_{\text {true }}}=\frac{E_{\mathrm{x}}}{n_{\mathrm{x}}}$, where n_{x} and E_{x} are experimentally approximated values. However, this ratio systematically overestimates the real correlation for different situations n_{x}; a more correct ratio is:

$$
\begin{equation*}
\frac{E_{\text {true }}}{n_{\text {true }}} \cdot \frac{1}{\sqrt[n_{\text {true }}-1]{n_{\text {true }}}}=\frac{E_{\mathrm{x}}}{n_{\mathrm{x}}} \cdot \frac{1}{\sqrt[n_{\mathrm{x}}-1]{n_{\mathrm{x}}}} \equiv \frac{E_{\mathrm{x}}}{n_{\mathrm{x}} \frac{\mathrm{n}_{\mathrm{x}}-1}{\mathrm{n}^{2}}} . \tag{1}
\end{equation*}
$$

This relation can be derived in quite the same way as in [1]; starting from the maximum condition $\left.\frac{\mathrm{d}^{2} \alpha}{\mathrm{~d} T^{2}}\right|_{T}=0$ the rate constant becomes (dashes above symbols indicate maximum situation: $\left.\overline{\alpha^{(n)}}, \overline{T^{(n)}}, \bar{K}\right)$

$$
\begin{equation*}
\bar{K}=\frac{\left(1-\overline{\alpha^{(n)}}\right)^{1-\mathbf{n}}}{n} \cdot \frac{E \cdot q}{k \overline{T^{(\mathrm{n}) 2}}} \tag{2}
\end{equation*}
$$

and the maximum reaction intensity

$$
\begin{equation*}
\frac{\overline{\mathrm{d} \alpha}}{\mathrm{~d} T}=\left(1-\overline{\alpha^{(\mathrm{n})}}\right)^{\mathrm{n}} \cdot \bar{K}=\frac{1-\overline{\alpha^{(\mathrm{n})}}}{n} \cdot \frac{E \cdot q}{k T^{(\overline{\mathrm{n}})} 2} \tag{3}
\end{equation*}
$$

Only one further connection must additionally be taken into account [2,3]

$$
\begin{equation*}
\overline{\alpha^{(n)}}=1-\sqrt[1-n]{n} \cdot(2-\bar{\eta}) . \tag{4}
\end{equation*}
$$

In [1] this last dependence of $\alpha^{\overline{(n)}}$ on n has been neglected (here we will neglect only the much smaller dependencies of $\overline{T^{(\mathrm{n})}}$ and therefore also of $\bar{\eta}[4]$ on n).

For a number of reaction orders n often examined, the reduction factors in (1) are:

n	$1 / 3$	$1 / 2$	$2 / 3$	1	$11 / 2$	2	3	4
$n-1$ $\sqrt[n]{n}$ $\frac{n}{n-1}$	5.196	4.	3.375	$\mathrm{e}=2.718$	2.25	2.	1.732	1.587
n^{n}	1.732	2.	2.25	2.718	3.375	4.	5.196	6.350

If the shape of experimental curves $\alpha^{(\mathrm{n})}$ is known more precisely, especially with respect to the amount and position of $\alpha \overline{T^{(\mathrm{n})}}$ and the asymmetry around \bar{T}, then from these data n can be derived directly and should not be considered as an unknown variable.

References

1. V. M. Gorbachev, J. Thermal Anal. 8 (1975) 27.
2. G. Gyulai and E. J. Greenhow, Thermochim. Acta, 6 (1973) 254.
3. M. Balarin, Thermochim. Acta, 24 (1978) 176.
4. M. Balarin, J. Thermal Anal, 12 (1977) 169.
